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The time-dependent deformation and burst of a viscous drop in an arbitrary shear 
flow at zero Reynolds number is studied. The viscosities of the drop and the suspending 
fluid are assumed to be equal. A numerical scheme to track the (non-axisymmetric) 
drop shape in time is presented, and used to investigate the deformation induced by 
two-dimensional shear and orthogonal rheometer flows. Steady deformations, critical 
flow rates and burst modes are determined, and compared with asymptotic (small 
and large) deformation theories, and with experiment. 

1. Introduction 
The dynamics of an isolated small drop of fluid of viscosity hy freely suspended in 

a second fluid of viscosity y which is caused to move in a prescribed manner have been 
the subject of several investigations, starting with the pioneering work of Taylor (1 934). 
At vanishingly small Reynolds number the drop is able to translate with the same 
velocity as the local applied flow, but, in consequence of surface tension and the un- 
equal viscosities, can neither freely deform in the local shear nor in general remain 
spherical. In  a steady shear flow, a balance between viscous deforming stresses and 
the restoring forces generated by surface tension can give rise to a steady non-spherical 
drop shape, but, if the viscous forces are too strong, then the drop will break into two 
or more fragments. 

The problems of determining the drop deformation and critical flow rate for burst 
have been tackled by several complementary techniques. Experimentally, the phe- 
nomena have been memured (in particular by Taylor 1934, and by Rumscheidt & 
Mason 1961) though the shear flows considered have been restricted in most investiga- 
tions to either simple shear in a Couette device, or plane hyperbolic flow generated 
in a four-roller apparatus. Theoretically, there have been three main lines of attack. 
First, small drop deformations away from sphericity have been considered by several 
authors (a critical review has been given recently by Rallison 1980). These theories 
have provided good agreement with experiment for both weak flows for all values of 
A, and for the entire range of flow strengths (provided the vorticity is non-zero) for 
large h (2 6). Second, large drop deformations have been examined by the methods 
of slender-body theory (Taylor 1964; Acrivos & Lo 1978; Hinch & Acrivos 1979,1980). 
Such results are appropriate and quantitatively accurate for small values of h ( 5 0.1). 
Third, Rallison & Acrivos (1978; hereinafter referred to as I) have developed a 
numerical scheme which in principle covers the entire range of A, but is, of course, 
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FIGURE 1 .  Definition sketch for the drop. 

most useful for the intermediate ranges of h and flow strength where the asymptotic 
theories do not apply. 

In  I ,  this scheme was used to analyse the time-dependent deformation of a drop 
for arbitrary (non-zero) h in a uniaxial extensional flow. The important simplifying 
feature of such a flow is its axisymmetry, which gives rise to an axisymmetric (and so 
one-dimensional) deformed drop surface. The principal aim of the present paper is 
to treat general shear flows (such as simple shear and plane hyperbolic for which 
experimental data exist) so that the restriction to axisymmetry must be relaxed, 
thereby greatly increasing the computational complexity. We make instead the 
assumption that the viscosities of the discrete and continuous phases are the same 
(A = 1): the numerical matrix inversion described in I is then unnecessary and the 
computation time is again reduced. The case appears experimentally typical of the 
intermediate A range; there seems no reason to suppose that it is special except insofar 
as it provides a considerable mathematical simplification (given in Q 2). 

In  Q 3 the numerical scheme is presented, and the non-trivial problem of determining 
numerically the surface normals and curvatures is discussed. The principal results 
from asymptotic theories are collected in 0 4 for comparison with the numerical results 
of Q 5. Two-dimensional shear flows are investigated in detail in 3 5 and equilibrium 
drop shapes, critical flow rates and burst modes are described. For these flows com- 
parisons are also made with experiment. We finally consider briefly steady orthogonal 
rheometer flows, which are also experimentally feasible and have been used by Hakimi 
& Schowalter (1980) to study low-viscosity drops ( A  x 0.1). Unfortunately, no data 
have yet been reported in orthogonal rheometer flows for the A = 1 drops considered 
here. 

2. Formulation of the problem 
As noted in I, the analysis of the deformation of a drop suspended in another fluid 

of the =me viscosity (A = 1) has the special simplifying feature that, as regards the 
equations which define the fluid velocity u at each instant of time, the same fluid may 
be regarded as occupying all space, but with a membrane of stokeslets provided by 
surface tension forces a t  the position of the interface S (see figure 1). These stokeslets 
have a strength proportional to the surface curvature V% (where Vs is a two-dimen- 
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sional surface gradient) and to the surface tension coefficient y, and hence generate 
a fluid velocity at an arbitrary point x given by 

where 

u(x) = -- 1 J(x-y).nV8ndflu, fw s 

J(r) = I/r+rr/? 

is the Oseen tensor giving the fluid velocity at  r produced by a point force a t  the 
origin in unbounded fluid. In  view of the linearity of the Stokes equations, when the 
drop is placed in an applied flow ua(x) the total fluid velocity is given simply by 

u(x) = Uyx) -- 1 J(x-y).nV%dr3,. 
8 v  s 

Now, in view of the supposed smallness of the drop, the applied flow urn may be 

ua(x) = Gr.x = G(e+w).x, 

where Q is the shear rate, and e, w are respectively the non-dimensional rate of strain 
and vorticity tensors. If the drop volume is tna3, then, scaling time by the surface 
tension time 47rpa/y aa in I ,  the deformation is governed by the non-dimensional 
parameter 

i2 = 4n,uGa/y 

and the instantaneous velocity is given by 

considered to vary linearly with position, so that 

u(x) = Q(e+w).x-- 2: Js J(x-y).nVsndcS,. (1) 

In particular, this result is valid for points x which lie in 8. 
Now, with a given shear rate r(t) the deformation of the surface s(t) from some 

prescribed initial shape S(0)  may be followed in time by the same technique aa used 
in I: if S( t )  is known, the velocity u at each point x~iY(t) may be determined from (l), 
and hence x can be advanced to x + A h .  nn, and thus S(t + At) is determined. This 
process may be repeated until f l  either attains a steady shape, or deforms without 
bound, or attempts to split into two or more components. 

3. The numerical scheme 
In using the approach outlined above it is necessary to approximate the surface S(t)  

by means of a number of collocation points q, i = 1, . . . , N. Even if these are initially 
evenly spaced over S(O), as the deformation proceeds they will become unevenly 
distributed, and so we devise first a numerical method to determine the surface normal 
and curvature at  each point, and second a convenient scheme for evaluating the 
(singular) integral in (1). 
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3.1. Determination of surface gradients and curvature 

Whereas in the corresponding two-dimensional (say axisymmetric) problem with 
x i ~ W z  evaluation of surface tangents and curvatures is rendered a fairly straight- 
forward matter by use of central differences even when the points are unevenly spaced, 
determining the surface curvature in the three-dimensional case is a non-trivial 
problem, principally because there is no simple analogous procedure. 

In  order to find the surface normal ni and curvature K~ at xi we use the following 
method. In some neighbourhood N of S(t) (specifically, within the smaller principal 
radius of curvature of the surface), let 

f(x) = {algebraic distance of xfrom h'(t)} = f inf{(y-xl:yES(t)) 

with the + or - sign chosen according as x is outside or inside S. Then S(t)  is given 
bY 

f(x) = 0, 

lVfl = 1 forall XEM 

and f is infinitely differentiable in N .  Further, by construction 

and hence 

We therefore require a numerical procedure to determine the first and second gradients 
off at  xi€&@). Suppose then that xj€S(t) and let 

Then 

ni = Vf, K~ = Vy. 

h = xj-xi. 

0 = f(xj) = f(xi)+h.Vf(xi)+Bhh:VVf(xi)+O(h3) 

+ O +  h.n,++hh:u, as lhl+ 0, 

where ui = VVf(xi) so that K~ = t r q .  Now ui is a symmetric tensor, and thus we 
have nine unknowns (n+ ui) to be determined. We have at our disposal the equations 

n,.n, = 1, 

Vf.VVf = 0 so that Ki.ni = 0 

and, for any surface displacement h, 

The last relation must therefore provide five independent (linear) equations for the 
unknowns, and thus for each point ui we require a list of five adjacent points for use 
in (4). We then have nine nonlinear algebraic equations (2), (3)1,2,3, (4)1,...,6 for (ni,ui) 
which may be solved by an iterative Newton-Raphson procedure. 

Two economies may be practised in evaluating ni, ui at each time t .  First, since the 
change in each time step is slight, the values at  the preceding time provide a good first 
estimate in the iteration. Second, since the majority of time in the Newton-Raphson 
routine is spent in setting up and inverting the 9 x 9 gradient matrix for the unknowns, 
and since this matrix changes little during the subsequent iteration, it is generally 
sufficient to compute the inverse just once for each point at  each time step, and to 
use this approximate inverse to operate on the residuals. This saving in computation 
time greatly outweighs that lost in the occasional additional iteration required. 

ni.h++hh:ui = 0. (4) 
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FIGURE 2. Choiae of collocation points over a sphere in spherical polar co-ordinates. 

3.2. Evaluation of the surface integral 
We need also a convenient finite-difference representation of the integral in (1) where 
S is specified by unevenly distributed points xi. The simplest such representation, 
which is adequate for our purpose, is to divide S(t)  into trianglee whose vertices consist 
of three adjacent xi’s. These may be chosen to be roughly equilateral a t  the initial 
instant, and, provided the distortion of the shape does not become too great (and the 
collocation points are judiciously chosen), will not become too elongated throughout 
the evolution. For computational purposes, a list of vertices of each triangle is easy 
to keep. 

At each xi, the contribution to the integral from any triangle not having a vertex 
at  xi may be calculated by the trapezoidal rule (which is tantamount, once the triangle 
areaa are known, to assigning a contribution to each xj,j = 1, . . . , N). Unfortunately, 
however, since J has a 1 / ~  singularity at  r = 0, the trapezoidal rule is not appropriate 
for those triangles which do have a vertex at  q. These must be considered separately, 
and an analytic representation of the contribution from a ‘singular’ triangle is given 
in the appendix. The scheme used to evaluate u(xi) thus consists in running through 
each collocation point x,,j 4 i, and adding the trapezoidal rule contribution from 
each; adding those parts appropriate to the triangles with a vertex at  xi; and finally 
subtracting again the trapezoidal rule contributions from vertices adjacent to xi 
which would otherwise be counted twice. 
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3.3. Choice of the collocation points 
As noted above, for computing the integrals the surface is most appropriately divided 
into triangles, whereas for computing curvatures five near neighbours are needed for 
Bach point. starting with a unit sphere, the most natural choice for the distribution 
of collocation points would thus be the vertices of a regular icosahedron, which would 
provide simultaneously the triangular and pentagonal geometries required. Unfor- 
tunrttely, the side of a icosahedron is (initially) greater than 1 which is too large for 
acceptable accuracy. Instead, therefore, we use an ad hoc mesh of point$ based on 
(0,qi) co-ordinates on the sphere surface shown in figure 2. 

There are 117 collocation points (those along the dotted line at  the bottom are to 
be identified with the ones at the top), and the surface is thereby divided into 230 
triangular regions, none of which has an area greater than 1 yo of the total. For three 
representative points marked ‘X’  in the diagram, we show circled the five adjacent 
points used to compute the gradients at  X. 

3.4. Numerical stability 
It is straightforward to show on an order-of-magnitude basis that, for stability of the 
scheme in time, the time step At must not be too large. Specifically we require 

At < KAx 

with K an O( 1) constant. In practice, K = & was found adequate. Since at  the initial 
instant Ax s 0.1, this requires At < 0.05 but when the drop is significantly distorted 
Ax can be substantially smaller. In  fact, for drops of aspect ratio 3 or more, it was 
found necessary to  take At < 0.02, with the unfortunate consequence that the com- 
putation time for convergence to equilibrium could be greatly increased. 

The criterion that the drop shape had converged to equilibrium was that the normal 
velocity at each xi did not exceed 0.05. If the computation was continued beyond this 
point, there was very little change in the measured deformation and, by extrapolating 
the shape at  successive times to t = co with a Shanks transform, the slow final phase 
was avoided. 

4. Theories for drop deformation 
As a preliminary to the presentation of numerical results, we set out in this section 

the principal theoretical conclusions from asymptotic analyses. It is usual to define a 
scalar measure of the drop distortion by putting 

- I -b  
JJ=-  

l + b  

where 2, b are the major and minor semi-axes of the drop shape (defined by the largest 
and smallest distances of the surface from the centre). Then 0 < D c 1, D = 0 for a 
sphere, and D + 1 for very high aspect ratio drops. The equilibrium value of D depends 
upon both i2 and I’. We denote the critical flow rate for burst (if such exists) by SZ, 
and plainly llc is a function of I’ though it is not necessarily uniquely specifled by I’: 
Hinch & Acrivos (1980) have shown theoretically, and Torza, Cox & Mason (1972) 
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have demonstrated experimentally, that 8, may depend also on the time history of 
52 and r, i.e. how rapidly the shear rate is increased. For the present, however, we 
consider only time histories in which I' ie constant, and in which f2 is increased very 
gradually to its final value. We denote by 0, the largest steady sustainable dirrtortion, 
which occurs at 52 = 8, if Q, c coy and is asymptotically attained (ts i2 + a0 if 

As noted in $1, mymptotic results are available for both large and small drop dis- 
52, = 00. 

tortions and me summarized below. 

4.1. Small deformations 
The theory for small deformations has recently been reviewed by Rallison (1980). For 
weak flows R -f 0, the simplest (linear) result due to Taylor (1934) gives an ellipsoidal 
shape 

where 
(x.x)* = l + y . A ( t ) . x ,  

8A 64n - = R e - x A ,  at (5) 

where emax and emin are the largest and smallest principal rates of strain. O(R2) theories 
involve inclusion of fourth harmonics in the shape, and enable a prediction of R, 
(Barthhs-Biesel & Acrivos 1973). These authors give in particular critical values for 
simple shear (8, = 3.9) and hyperbolic flow (52, = 1.2). 

In  deriving (5) it is assumed that o and e have the same order of magnitude, but if 
Iloll/llell = O(i2-l) 1 then (5) should be replaced by 

64n -- - 52e--A. 9 A  
9 t  35 (7) 

The appearance of a Jaumann derivative 9 / 9 t  remedies the absence of o in (5), and 
the replacement of by 9 / . 9 t  occurs also at 0(Q2) for general A, and for h --+ a0 
for general R (Rallison 1980). The equilibrium solution of (7) satisfiea 

with 

64n 

For instance, in considering the almost pure rotation flow of 5 5.2 (b) with 

we find 

giving 
D = +( 1 + x) R'/[ 1 + R12( 1 - x ) ~ ] * ,  where 52' = 3552/64n, (9) 

as x+-1. 11+x Q,=m and D c - - -  
2 1-x 
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Authors Flow nm, h -* 0 

Taylor (1964) Uniaxial extension ( 1  1) 0*930h-) 
Acrivos BE Lo (1978) 
Hinch & Aorivos (1979) Plane hyperbolic (1 3) 1-82h-* 

Hinch & Acrivos (1980) Simple shear (1 2) 0.680h-4 

TABLE 1. Critical values of i2 for special flows: h + 0. 

The time-dependent shape evolution equation (5) indicates a monotonic approach 
to equilibrium on the surface tension time scale (which is O( 1) in our units). When the 
vorticity terms are important as in (7) on the other hand, there is an oscillatory 
approach to equilibrium with, a t  large values of R, a spin about the equilibrium on 
the much shorter shear time scale. 

4.2. Large deformations 
Equations (5) and (7) apply exactly whenever the flow is sufficiently weak or the 
vorticity sufficiently strong. A more speculative use of existing theory for the A = 1 
problem concerns the possible applicability of large distortion analyses, based on 
slender-body theory, and developed specifically to consider bubbles of very low via- 
cosity ( A  + 0) .  The results obtained for Qc in various special flows are shown in table l. 

These analyses have provided also a physical understanding of the dynamics of 
long thin drops. For example the burst mechanism is shown to be the absence of a 
sufficiently large pressure gradient inside the drop to push the fluid drawn along the 
surface toward the tip by the outer flow back along the centre-line. In discussing 
simple shear, Hinch & Acrivos (1980) show further that the equilibrium shape for 
flows close to critical can be attained only by very gradual increase of a, and that, if 
Q is increased too rapidly, then the drop will break. In addition the drop tip is found 
to approach equilibrium by a spiral. 

It is clear that the results for A = 1 cannot be expected to conform accurately to 
either the A = 0 or h = 00 theories. We show later that the qualitative physical features 
shown by these theories do occur for h = 1, though the quantitative discrepancies 
may be quite large. 

5. Numerical results 
The set of possible shear flows that may be investigated is large in view of the 

number of choices for the traceless second-rank tensor QI'. Since an overall rotation 
of axes cannot affect the magnitude of drop distortion, nor the critical shear rate for 
break-up, an exhaustive analysis would require the investigation of a five-parameter 
space (corresponding, say, to two principal rates of stretching in Re, and the relative 
orientation and magnitude of the vorticity). Such a task would be enormous, and here 
we consider instead a range of flows which are experimentally feasible, and which 
should be representative of the important physics of the drop deformation problem. 
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5.1. Uniaxial e x t e n s h d  $ow 
This flow is defined by 

2 0 0  

so that it is axisymmetric (about the 1-direction), and, starting from a spherical initial 
condition, the drop shape will remain axisymmetric throughout its time evolution. 

This case is discussed for general drop viscosity ratios h in I, where the azimuthal 
integrations are performed analytically. By way of a check on the numerical scheme 
here, the results of I were reproduced and the critical value of Q ( = 0.76) obtained, to 
within an acceptable accuracy (3 %). We note in passing that for this flow the magni- 
tude of D is given even at Q, to within 20 % by the linear theory (6) but that the 
O(Q2) theory of BarthBs-Biesel t Acrivos (1973) overestimates the magnitude of the 
distortion for large a. The value of O,, on the other hand, is bracketed to within 20 yo 
by the quadratic theory (an underestimate) and the slender-body theory at h = 1 
(see table 1). 

5.2. T w o - d i m e m ' m l ~ s  
The class of two-dimensional shear flows, with vorticity in the 3-direction, and principal 
stretches in the (1, 2)-plane, is defined by the two-parameter family ( Q x )  where 

I'= x 0 0 sothat e=*(l+X) 1 0 0 and o = t ( l - x )  -1 0 0 . 

Noting that the transformation (Q, 2) H (Q/x ,  1/x) leaves the flow unchanged (by 
interchange of the 1- and 2-directions), it  is clear that without loss of generality x 
may be restricted to the range [ - 1,1]: x = - 1 corresponds to pure rotation; x = 0 to 
simple shear; and x = 1 to plane hyperbolic flow. Thus x increases with the amount of 
stretching in I'. 

(0" : 0") (1 : :) (::I 

(0" : :) (a) Simple shearjlow, x = 0:  

r =  o o 0 .  (12) 

This is the easiest steady shear to reproduce experimentally, and by far the majority 
of data have concerned this flow. In  figure 3 we show a succession of equilibrium drop 
shapes for increasing flow strengths Q. For i2 < 2, the shape perturbation is ellipsoidal 
to a good approximation, but for larger O higher harmonics appear, and for the largest 
value shown (O = 5.3) the mid cross-section haa an aspect ratio of 3 and is perhaps 
more accurately pictured as an S-shaped slender body as in Hinch & Acrivos' (1980) 
analysis for h --f 0 than as a near-sphere. 

Each equilibrium was obtained by taking as an initial condition for each value of 
O the equilibrium shape attained for a lower value. For Q 5 3, the new equilibrium 
was reached after a time t B 0.3, and convergence to the limiting shape waa mono- 
tonic. For larger Q, even for small increments, the equilibrium was attained slowly 
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FICURB 3. Equilibrium shapes for simjple shear flow. 

(t z I )  and there was a small oscillation of the shape before the equilibrium was 
obtained. For these highly deformed states i t  was necessary to take very small time 
steps (At z 0.01); otherwise numerical instabilities on the scale of the collocation 
point spacing appeared. 

In  figure 4 we summarize the equilibrium results in terms of D and 4, the angle 
between the drop axis and the undisturbed streamlines. It may be seen that the linear 
theory (6) for D gives extraordinarily good agreement for almost all Q < This 
mdst be regarded as fortuitous, since the corresponding result for 4 (= 45' for all Q) 
is poor, and indeed the linear theory for another measure of the deformation (the 
aspect ratio, say), would involve 30 yo errors at Q = 5. $he O(R2) theory of Barthh- 
giesel & Acrivos (1973) is also shown, and, while the deviation above the linear theory 
is qualitatively correct, the quantitative comparison is poor. The effect of including 
vorticity as in (8) is also to worsen the agreement. 

The prediction Q, = 5.3 compares well with the data of Rumscheidt & Mmon 
(1961); the result given by the quadratic theory is Qc = 3.9, while the slender body 
result of table 1 is an underestimate by an order of magnitude. 

We now turn to the case where no equilibrium is found for the shape. This always 
occub for R > R, = 5.3, and may also occur for R < R, if the flow is increased with 
sufficient suddenness. Thus R, is a functional over the history of a, or, for fixed R, 
of the initial condition for the shape. A careful investigation of this dependence is 
difficult, in part because so many degrees of freedom are available, and also because, 
for drops of high aspect ratio, small time steps must be taken. No systematic study 
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FIGUBE 4. Comparison of theories wd experimpnt for simple sheer (n) the incl*ation of the 
drop axis, 9; (b)  the distortion D.  -, numerical results; 0,  burst; - - -, linear theory (6); - - - - -, quadratic theory (BarthBs-Biesel & Acrivos (1873)) ; - - - - -, theory with inclusion of 
vorticity (8); 0, experiments of Rumscheidt & Mason (1961). 

of this point was undertaken, but it was found that the equilibrium for 12 = 5.2 was 
not attained starting from the converged solution at 12 = 4, but that it was produced 
starting from that at 12 = 6. This phenomenon was found also for low-viscosity drops 
by Hinch & Acrivos (1980). 

The mode of burst also depended upon the history of 12. For flow strengths more 
than about 20 yo above SZ, the drop extended into a long thread aligned closely with 
the streamlines. With the density of collocation points in this numerical realization, 
it was possible to follow the time evolution until the drop had an aspect ratio of about 
6 (so that the curvature at the ends was in excess of 10). At this point the resolution 
became inadequate, but the result strongly suggests the type B-2 burst described by 
Rumscheidt & Mason (1961) with the formation of a long thread which ultimately 
undergoes a surface-tension instability into a large number of small drops. 

A second mode of burst was obtained, though some care was needed to produce it. 
Rumscheidt & Mason (1961) noted that if !2 was increased to just above the drop 
would gradually extend until it had an aspect ratio of about 5, and then suddenly 
split into two large pieces, with (usually) three small satellite drops between them 
(type B-1 burst). The difficulty with reproducing this effect numerically is that, since 
12 is only just supercritical, a long time is needed for the drop to extend significantly 
and small time steps must be taken. This process may be speeded up by first increasing 
!2 to be substantially supercritical and then decreasing it again. Unfortunately, how- 
ever, this shear history tends to rotate the shape until it is nearly parallel with the 

16 F L Y  109 
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W a r n  6. Incipient drop break-up (type B-1) in simple sheer, contours of 
oonatant elevation of drop surfme. 

FIQUBE 6. Deformation curves for two-dimensional flows with x > 0. -, numerical reeulte; 
a, burst; --- , linear theory (6); - - - - -, quadratio theory (BerthBe-Bieseldc Acrivoa (1973)). 

streamlines and a type B-2 burst is obtained. An albnative program for r(t) which 
did reproduce the desired behaviour, however, waa to take 
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FIOTJRE 7. Equilibrium drop shapes for hyperbolic flow, x = 1. 

for a time 0.2 following the equilibrium at f2 = 5.3 and then to return to simple shear 
with f2 = 6. The effect of the short burst of the foreign flow is largely to rotate the 
drop away from the streamlines, and hence subsequently it extends more rapidy. 
After a further time of order 1, the shape of figure 5 was obtained, in which the lines 
show contours of constant elevation of the shape. The drop shape is no longer convex, 
and plainly shows a tendency to break into three pieces. In  fact the curvature at 
certain points of the surface in figure 5 is close to zero and shortly afterwards becomes 
negative. It proved impossible to follow the bursting process further since i t  occurs 
rapidly, with large changes in curvature which, for such a complex shape, are poorly 
resolved by the hundred or so collocation points. The rapidity of the burst itself agrees 
with Rumscheidt & Mason’s (1961) observation. 

(b )  Flows with less vorticity than simple shear, 0 < x < 1 : The claes of two-dimen- 
sional flows with less vorticity than simple shear is bounded at the opposite extreme 
by plane hyperbolic flow, x = 1. With axes aa chosen, the principal directions of 
stretching and compression are a t  45’ to the 1-direction, but by rotation of axes the 
more conventional choice 

0 0  

r=(B -; 0) (13) 

would give the same results for D and a,. 
In figure 6 we show the full deformation curves for x = 1 and 0.6 and part of the 

result for x = 0. It is again apparent that the linear theory (6) gives extraordinarily 
good agreement with the numerical results. The fit is best for x = 0, but under- 
estimates D by only 10 % at burst even for x = 1. 

For hyperbolic flow, the results are very similar to those for uniaxial extension 
discussed in $5.1. Again, inclusion of quadratic terms (BarthBs-Biesel & Acrivos 
1973) worsens the quantitative accuracy for D but is qualitatively correct (see 
figure 0) and produces an underestimate for f2, by 16 yo. The slender body result for 
f2, in table 1 is an overestimate by 20 yo which is surprisingly good considering the 
smallness of 0,. The experiments of Rumscheidt & Mason (1961) show close agree- 
ment with the linear theory for D, and a value for f2, ( = 1-3) which is very close to the 
quadratic result, but is lower than that found here (1.5). The corresponding 0, ( = 04), 

16-2 
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FIQURE 8. Deformation curves for two-dimensional flows with x < 0. -, numerical results; 
0,  burst; - - -, linear theory (6) ; - . - . - - -, theory with inclusion of vorticity (8). 

however, is substantially higher than that predicted by either theory; the reaaon for 
this discrepancy is not known. 

It is readily apparent, as predicted by all the (nonlinear) theories of drop deforma- 
tion, that an increase in vorticity (x decreasing) leads to a decrease in D for given R, 
and an increase in Q,. The physical reason, which is easily seen for high-viscosity 
drops, is that the higher the \-orticity the more rapidly the material inside the drop 
rotates, and so the higher the frequency of oscillation of stretching and compression 
due to e as seen in a frame fixed in the drop, and thus the smaller the distortion. It 
can also be seen from figure 6 (compare also figures 3 and 7) that, as x decreases from 1, 
so the limiting distortion D, increases. Thus in hyperbolic flow, the largest sustainable 
steady distortion is considerably smaller than the largest available for simple shear. 

( c )  Flows with more vorticity than simple shear, - 1 < x < 0:  The extreme flow of this 
class is pure rotation about the 3-direction when x = - 1. In  that case it is physically 
obvious that the drop will rotate without deformation however large Q may be, and 
thus 

D = 0 for all R, Q, = co. 

In figure 8 we show the deformation curves for x = - 0.2, - 0.5. The curve for 
x = -0.2 stops at Q = 13 where the drop bursts, with an oscillatorily growing in- 
stability. The growth rate of the instability is small and involves several cycles of 
oscillation of the entire shape. For x = - 0.5, on the other hand, no critical flow rate 
was found. For values of Q beyond 10 (up to 25), no significant increase in D could 
be obtained and apparently Q, = co for that case. For each value of Cl > 3, approach 
to equilibrium was by a spiral. 

For flows with such strong vorticity, the linear theory (6) for D was found to have 
a small range of usefulness (see figure 8), and the numerical results deviated significantly 
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FIGURE 9. Critical values for two-dimensional flows. (a) Deformation 0,. (b)  Flow 
rate a,. - , numerical results ; - * - - - - -, theory (10) for x -+- 1. 

below the linear predictions. The inclusion of the vorticity term as in (€9, however, 
produced much closer agreement, with quite accurate results for x = - 0.5. 

On the basis of the results for all the two-dimensional flows summarized in figure 9, 
it is clear that, for x < xc x - 0.3, no flow rate, however strong, will break the drop. 
This result is highly reminiscent of the corresponding asymptotic unbreakability in 
simple shear of drops whose viscosity ratio exceeds 3.4 (Grace 1971): plainly an increase 
of internal viscosity or of vorticity inhibits and ultimately prevents drop break-up 
in shear. 

In figure 9 we show also the largest sustainable steady deformations D&). For 
x 5 xc the drop shape approaches a steady small deformation as 8 + co which is 
vanishingly small for x = - 1 and, since flows with little vorticity (x + 1) are more 
effective in breaking the drop, 0, has a maximum over x which is found to occur just 
beyond simple shear at x x 0.1. 

5.3. Orthogonal rheometer Jlows 
The linear flow generated between two offset rotating disks (an orthogonal rheometer) 
gives rise to the two-parameter family (8, $), wheIe 

$ 0  0 0  



480 J .  M .  Rallistm 

D 

FIGURE 10. Deformation curves for orthogonal rheometer flows. 
, numerical results ; , burst ; - - - , linear theory (6). - 

so that 
0 1 0  

0 0 0  
.=:(I 0 0 )  

and 
1 -2$ 

co=i("l 0 z) with @>O. 

This flow has been used by Hakimi & Schowalter ( 1980) in an experimental investigation 
of the deformation of comparatively inviscid drops (A z 0-l) ,  but as yet has not been 
used for drops with h = 1. The limiting case $ = 0 is simple shear in the (1,2)-plane 
and has been investigated above, whereas the opposite extreme $ = 00 is pure rotation 
about the 2-direction. For all values of @, the vorticity in such flows is substantial, 
greater than that in simple shear, and thus is weak in regard to generating deformation 
and burst (Schowalter 1979). 

The drop shape for such a flow has a complex three-dimensional structure. For small 
values of $ (z 0.6) it  is found that the largest deformations are, for all values of R 
up to Rc, confined close to the (1,2)-plane. For larger values of $, however, at modest 
Q, the largest deformations lie in the (1,2)-plane as the linear theory (6) suggests, but 
for larger R the principal axes lie rather in the (2, 3)-plane and no burst occurs how- 
ever large R. 

In  figure 10 we show the deformation curves for a representative set of $. The linear 
theory gives D = 0.087R aa for simple shear for all values of $ since it takes no account 
of the vorticity. The inclusion of the Jaumann derivative as in (8) which is formally 
valid only for @ -f co improves the qualitative agreement and gives Ro = 00, but for 
$2 2 the quantitative accuracy is poor with D at R = 4 for $ = 2 still overestimated 
by 15%. 

w 0 
2 
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6. Conclusions 
We summarize here the principal results of the numerical study. 
As regards equilibrium drop shapes, for flows in which the vorticity is not too 

strong, IIwII S llell, the deformation measured by D is given to within 10 % over the 
entire subcritical range of flow strengths by the linear theory (6). The agreement is 
less good for [toll > I/eJI, though in that case the inclusion of vorticity (8) gives an 
improvement, and when llwll 2 411ell is quite accurate. 

The presence of vorticity is found to inhibit drop deformation and burst significantly, 
so that for flows with sufficient vorticity the drop will not burst however high the flow 
rate. Theoretical predictions of a, for extensional flows from both small and large 
deformation analyses give agreement to within 15 %, the small deformation result an 
underestimate, and the slender-body theory an overestimate. For shear flows, the 
large deformation result is inapplicable but the small deformation result still provides 
agreement to 20 yo. 

Finally we note that the numerical techniques developed in this paper and in I 
enable general drop viscosities and arbitrary shear flows to be considered. Our results 
have been restricted mainly to steady flows, but the method may similarly be applied 
to general prescribed shear histoees. 

This work wm supported in part by NATO Research Grant no. 1442. I am grateful 
to Professor A. Acrivos and Dr E. J. Hinch for numerous helpful suggestions. 

Appendix. Evaluation of the singular integral over an 
In  determining the fluid velocity generated by the surface 

to evaluate integrals of the form 

elemental triangle 
tension forces we need 

over the triangle A 8  shown in figure 11. 
The points 0, X , Z  are adjacent collocation points and so the quantity g (which 

involves curvature and normals at  each) is known a t  the vertices, and is supposed 

0 I 

X X 
0 I 

X X 

FIGURE 11. Definition sketch for an elemental triangle in the drop surface. 
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well-behaved throughout AS. The vectors x, y, z have magnitudes x, y, z which are 
small (O(Ax)) and in consequence the overall area of the triangle 

A S  = # [ x ~ z ~ - ( x . z ) ~ ] ~  = 0(Ax2). 

We may then write for r E AS, 

g(r) = go + A x .  r + Bz.  r + O(Ax2), 
in which 

and 
B = [x2(gz  - 90) - x * z(gx - g0)1/4ASZ, 

and it is then straightforward to show that 

Y z-y+z 

+ i [ ( B  - A )  y(z - x) + (B  + A )  (z - (2 + x)/y]) + O(A9) .  
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